Rechargeable quasi-solid state lithium battery with organic crystalline cathode
نویسندگان
چکیده
Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design.
منابع مشابه
Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery
Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...
متن کاملAll-Solid-State Lithium Batteries with Wide Operating Temperature Range
Lithium ion secondary batteries have a high voltage and a high energy density, as shown in Fig. 1, and are widely used in mobile devices such as cell phones, notebook PCs and PDAs. However, since lithium ion secondary batteries use a flammable organic liquid electrolyte, there is a risk of explosion or fire. Fire accidents can also occur due to contamination during production or from overchargi...
متن کاملDoped LiFePO4 Cathodes for High Power Density Lithium Ion Batteries
Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode materials in lithium ion batteries, but with a lower raw materials cost and an increased level of safety. An inherent limitation of LiFePO4 acknowledged by researchers studying t...
متن کاملIn Situ Deposition and Ultrahigh Vacuum STMÕAFM Study of V2O5 ÕLi3PO4 Interface in a Rechargeable Lithium-Ion Battery
A thin-film solid-state battery was prepared with a vanadium pentoxide cathode and a lithium phosphate electrolyte and studied in situ by ultrahigh vacuum scanning tunneling microscope/atomic force microscopy ~STM/AFM!. Orientation of the ~001! plane of V2O5 parallel to the substrate was detected via observation of the periodicity of 11.7 6 0.5 Å, which is consistent with the unit cell spacing ...
متن کاملMicroporous gel polymer electrolytes for lithium rechargeable battery application
Microporous poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) membranes were prepared using the phase-separation method. Then, the membranes were immersed in liquid electrolyte to form polymer electrolytes. The effects of PMMA on the morphology, degree of crystallinity, porosity, and electrolyte uptake of the PVDF membrane were studied. The addition of PMMA increased the pore size...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2012